
Answers to the Exam of Symmetry in Physics of April 10, 2015

Exercise 1

Consider an idealized beach ball with color pattern like in the picture below. If the north
and south pole can be distinguished from each other, for instance by the color of the
round patches, the symmetry group of the beach ball is a subgroup of O(3) called C3v.

(a) Identify all symmetry transformations that leave this beach ball invariant and divide
them into conjugacy classes, using geometrical arguments.

Define the ẑ direction as the unit vector pointing from the middle of the ball
to the north pole. Define the x̂ direction as the unit vector pointing from the
middle towards the center of one of the blue areas/bands. The ŷ direction is
defined such as to make a right-handed basis. The ball is invariant under the
rotations around ẑ over 0◦, 120◦, 240◦, which can be called e, c, c2. The ball
is invariant under reflections in the x̂-ẑ plane, and the two planes obtained
from it by rotation around ẑ over 120◦ and 240◦. The three reflections are
called b1, b2, b3. The operations bi are thus clearly conjugated, being related to
each other by a rotation. The two non-trivial rotations c and c2 are conjugated
because they can be related to each other by a reflection. e is in a class by itself.
There are thus three conjugacy classes: (e), (c) = (c2), (b1) = (b2) = (b3).

(b) Give an identification between elements of C3v and S3 and argue that the two groups
are isomorphic.

S3 is the group of permutations of 3 objects. Label the three blue areas/bands
by 1,2,3. Then one establishes the bijective identification c = (123), c2 = (132),
b1 = (23), b2 = (13), b3 = (12) that shows that the elements of C3v and
S3 follow the same group multiplication: b1c = (23)(123) = (13) = b2 and
b2c = (13)(123) = (12) = b3 = b1c

2, which corresponds to the fact that a
rotation followed by a reflection is again a reflection. Three-fold symmetries



in C3v correspond to elements of order 3 in S3, etc. In this way all elements of
C3v and S3 can be expressed in terms of c and (for instance) b1, such that the
conditions c3 = (123)3 = e, b21 = (23)2 = e and (b1c)

2 = (13)2 = e hold. Upon
identification of b = b1 this also establishes the isomorphism of both C3v and
S3 with D3 = gp{b, c} with c3 = b2 = (bc)2 = e.

(c) Write down the character table of C3v and explain how the entries are obtained.

The character table is the same as that of D3:

(e) (c) (b)

D(1) 1 1 1
D(2) 1 1 −1
D(3) 2 −1 0

For an explanation see section 2.6 of the lecture notes.

(d) Construct explicitly the three-dimensional vector representation DV for the two trans-
formations that generate C3v and check the determinants.

DV (c) =

 cos(120◦) − sin(120◦) 0

sin(120◦) cos(120◦) 0
0 0 1

 =
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2
−
√
3
2

0
√
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2
0

0 0 1

 ,

DV (b) =

 1 0 0
0 −1 0
0 0 1

 .

The determinants are +1 and -1, as expected for a rotation and reflection
matrix in three dimensions, respectively.

(e) Decompose DV of C3v into irreps and use this to conclude whether this group allows
for an invariant three-dimensional vector.

χV = (3, 0, 1), henceDV ∼ D(1)⊕D(3), which follows either by direct inspection
or by calculating 1

[g]

∑
i kiχ

V (Ki)χ
(ν)(Ki)

∗ = aν . The decomposition includes

the trivial rep, which shows that there is an invariant vector/direction. Clearly
this corresponds to vectors pointing from south to north pole or vice versa.

(f) Determine the characters of the direct product representation DV ⊗ DV of C3v and
use them to determine the number of independent invariant tensors T ij (i, j = 1, 2, 3) (no
need to construct them explicitly).



χV⊗V = (9, 0, 1), which follows from squaring the characters of DV . To find
the number of independent invariant tensors, one has to determine a1, which
is the number of times the trivial irrep appears in the Clebsch-Gordan se-
ries of DV ⊗ DV . Hence, one calculates a1 = 1

[g]

∑
i kiχ

V⊗V (Ki)χ
(1)(Ki)

∗ =
1
6

(1 · 9 · 1 + 0 + 3 · 1 · 1) = 2, to conclude that there are 2 invariant tensors
(they are δij and δi3δj3).

(g) Explain in words what changes if the north and south pole of the beach ball cannot be
distinguished, i.e. explain what are the additional symmetries and whether an invariant
three-dimensional vector is allowed or not.

Reflection in the x̂-ŷ plane is now an additional symmetry transformation.
Adding it to the group C3v doubles the number of elements. An invariant
vector pointing in the ẑ direction is now not allowed because after the new
reflection it will point in the opposite direction, which means it has to be the
zero vector if it needs to stay invariant.

Exercise 2

(a) Write down the defining representation of SO(2).

The group is defined to be all 2 × 2 orthogonal matrices with determinant 1.
Those matrices can be parametrized as:

D(θ) =

(
cos θ − sin θ

sin θ cos θ

)
,

which altogether for 0 ≤ θ ≤ 2π form the defining representation.

(b) Write down the two-dimensional representation of SO(2) obtained by its action on
the vector (

x+ iy
x− iy

)
Since (x′ ± iy′) = e±iθ(x± iy) under rotations, the rep is

D(θ) =

(
eiθ 0

0 e−iθ

)
.

(c) Show whether the two above representations are equivalent or not.

They are equivalent because they have the same trace: 2 cos θ. They only
differ by a complex basis transformation that takes (x, y) into (x+ iy, x− iy).



(d) Explain whether the defining rep of SO(2) is an irrep or not.

From the form in (b) one concludes that over the complex numbers the defining
rep is reducible. Over the real numbers it is irreducible, which is not in conflict
with Schur’s lemma which refers to complex numbers.

(e) Show that the following matrices do not form a representation of SO(2):

D(θ) =

(
eiθ/2 0

0 e−iθ/2

)
, (1)

for a rotation over an angle θ.

Although it follows the expected multiplication D(θ1 + θ2) = D(θ1)D(θ2), it
has the property that D(2π) = −D(0), i.e. the identity in SO(2) is assigned to
two distinct matrices: ±1. This means that it is not a homomorphism, because
for instance D(π)D(π) = −D(0), whereas in SO(2) D(π)D(π) = D(0). (In
other words, (1) forms a projective rep of SO(2).)

(f) Explain how wave functions transform under SO(2) transformations.

Wave functions transform according to a unitary rep of SO(2), to ensure that
normalized wave functions remain normalized under the transformations. This
answer suffices. In more detail: recall that the unitary irreps of SO(2) ∼= U(1)
are D(m)(θ) = (eiθm) for integer m (see for instance section 6.1 of the book).
Hence, the wave functions will pick up a phase under SO(2) transformations
(possibly after a suitable basis tranformation). For |l,m〉 wave functions specif-
ically, one can consider the SO(2) transformations as rotations around the ẑ
axis, then

D
(l)
m′m(θ) = 〈l,m′|U(R(θ, ẑ))|l,m〉 = 〈l,m′|eiθLz/~|l,m〉 = eiθmδm′m.

Therefore, the state |l,m〉 transforms according to D(m) irrespective of l.

Exercise 3

(a) Explain how a magnetic field transforms under rotations and reflections.

A magnetic field is an axial-vector, hence transforms as a vector under rota-
tions, but transforms oppositely to a vector under reflections. Consider for
example a closed current loop. The Biot-Savart law for the resulting magnetic
field involves a vector product of two vectors yielding an axial-vector.



(b) Describe all symmetries of a three-dimensional space with a constant uniform magnetic
field B pointing in the ẑ direction (consider rotations, reflections, and translations).

The system is invariant under rotations around the ẑ direction, under reflec-
tions in the plane orthogonal to the ẑ direction, and under translations in all
directions. It is also invariant under space inversion or parity, which is a com-
bination of reflection in the plane orthogonal to the ẑ direction and a rotation
over π, so this is an equivalent way of formulating the reflection symmetry of
the system.

(c) Explain which components of the (linear) momentum and the orbital angular momen-
tum should be conserved based on the symmetries obtained in part (b).

Translation invariance in all directions implies conservation of all momentum
components. Rotation invariance around the ẑ axis implies conservation of the
ẑ component of the orbital angular momentum.

Consider a particle with charge q moving with velocity v in this constant uniform magnetic
field. The particle will experience a Lorentz force

F = q (v ×B) . (2)

(d) Show that the left- and right-hand side of the Lorentz force equation (2) transform in
the same way under rotations and reflections.

From the perspective of rotations the r.h.s. is a vector product of two vectors,
hence a vector itself, like the l.h.s. Regarding reflections it is most convenient
to consider reflection in the origin (space inversion or parity). Under parity
the vector v picks up a minus sign, whereas the axial-vector B does not, so
the r.h.s. picks up a minus sign, again like the vector F on the l.h.s.

(e) Ignoring cyclotron radiation emitted by the particle, its trajectory will be circular.
Explain whether this trajectory is in accordance with the symmetries in part (b) of this
question, and in case not, explain why not.

Nonzero F = dp/dt implies that momentum is not conserved. This may
seem in contradiction with translation invariance, but the introduction of a
particle into the system breaks the translation invariance. It introduces a
special point in space, namely the place where the particle is at a specific
moment. The circular trajectory has an angular momentum pointing in the ẑ
direction associated to it, which is conserved. The system is still in accordance
with the rotational symmetry, only now around a specific point: the center
of the circular orbit. The nonzero angular momentum is an axial vector, so
allowed by the parity invariance of the system.


